The SATO1 framework for N P problems *

Stanislav Busygin
busygin@gmail.com
http://www.stasbusygin.org

Abstract

We consider an N P-complete problem SATO01 having a range of remarkable properties.
First, it is equivalent to the weighted independent set problem on a graph I' with vertex
weights w, where the required independent set weight equals the maximum possible (T, w)
value m, and hence is decidable by computation of the weighted Lovasz number unless
al,w) < 9T, w) = k(IT',w) = m. Second, it admits a suitable constraint propagation
technique able to simplify many SATO01 instances. Third, a multitude of N P problems reduce
to SATO1 in a natural way, without excessive dimensionality growth. At that, the obtained
SATO01 formulation tends to have a clear interpretation within notion of the original problem.
Finally, we outline a rationale for choosing SAT01 as the framework for N P problems from
an information theory viewpoint.

Keywords: SATO01, N P-complete, maximum weight independent set problem, Lovész
number, constraint propagation, polynomial reduction, SAT, Hamilton cycle problem, graph
isomorphism, subgraph isomorphism, extended 15-puzzle, Hanoi tower puzzle, blocksworld
problem, factoring.

1 Introduction

The problem we are going to consider may be seen from two viewpoints. On one hand, it is a
variation of boolean satisfiability, but on the other hand it comes from 0-1 linear programming.
Both viewpoints are useful and will be utilized in this text. So, to avoid confusions we should
declare some specific conventions we are going to use.

First, we identify the boolean domain { false, true} with {0,1}. This means that any arith-
metic operation may be applied to truth values (with a numerical resulting value possibly outside
{0,1}) and any logical operation may be considered over {0,1}. Also, it means that an expres-
sion may mix arithmetic and logical operations. For the sake of simplicity, we will not use
truth values at all, always substituting 0 instead of false and 1 instead of true even in pure
logical formulas. Next, we do not make difference between clauses of conjuctive forms and equa-
tions/inequalities of systems over 0-1 variables. Indeed, equations and inequalities comprising a
system are joined by A-operator. On the other hand, a logical clause is nothing more than an
f(x) = 1 equation over 0-1 variables.

Taking into account these remarks, we define SAT! problem as a boolean satisfiability prob-
lem whose clauses have the form Y~ x; = 1 (so, 1 after SAT stands for the requirement of exactly
one true variable per clause.) In the matrix form, we are given a 0-1 matrix A = (a;j)mxn and
it is asked whether there is a 0-1 vector z = (z;)j=1..n, satisfying

Az = e, (1)

*Copyright (© Stanislav Busygin, 2003-2007. All rights reserved.

where e is the all-one vector (a;; = 1 if z; is in the i-th clause and a;; = 0 otherwise.) SAT1 is
N P-complete. It follows immediately from N P-completeness of “one-in-three” satisfiability [4]
(that corresponds to SAT1 with all clauses having length 3.) Another interpretation of SAT1
is the set partitioning problem with indifferent objective. Namely, we can consider columns of
matrix A to be subsets M; of the ground set {1...m} such that i € M; iff a;; = 1. Then, any
SAT1 solution x determines a partition of the ground set into the subsets {M; : z; = 1}. We
mention that the optimization set partitioning with a linear objective cx — min is a well-known
N P-hard problem of 0-1 programming, and was intensively studied, e.g. [3, 10, 12].

Next, we define an extension of SAT1 allowing clauses of the form (Z; V Tj) expressing
contradictions among variable pairs. We name this extended problem SAT0! (0 stands for
possibility to have zero true variables in these new clauses.) Note that if 2; and xj, are contained
in some common equation of (1), the relation (Zj V Zj) trivially holds. So, such a 2-clause is
meaningful only if the subsets M; and M), do not intersect. Since the pairwise contradictions
of variables play the crucial part in SAT01 framework, we introduce a special object expressing
the whole set of these relations. The contradiction graph T'(X, B) is a graph of n vertices
X = {1...n} corresponding to the SAT01 variables and there is an edge (j,k) € B iff z; and
x), appear together in a common clause (i.e. either in an equation of (1) or as (Z; V Tj) clause.)
Also, for a 0-1 vector = of length n define

I(z)={j: z; =1}. (2)

Obviously, if x satisfies (1) and I(z) is an independent set of the contradiction graph, then x is
a solution to SAT01. So, a 0-1 m x n matrix A and a graph I'(X, B), X = {1...n} defines an
instance SAT01(A,T'):

Ar = e, (3)
I(x) is an independent set of I'(X, B).
If there is no solution to (3) with z; = x, = 1, we say that z; and x}, are contradictory to each
other. In particular, if (j,k) € B, then x; and x;, will be called contradictory d priori.
Claim 1 If x satisfies (3) and each variable x; is contained in at least one of the equations:
Vie{l...n} Jie{l...m} a;; =1, (4)
then I(x) is a mazimal independent set of T'(X, B).

Proof. Assume I(x) is not maximal and there is k ¢ I(x) such that Vj € I(z) (j, k) ¢ E.
Then z;, = 0 and it is contained in at least one equation of (3). However, this equation is
satisfied and so some x; € I(x) is contained in it too. Thus, (j, k) € B and hence I(z) must be
maximal. QED.

Throughout the paper we will consider only SAT01 instances obeying (4). Otherwise, without
loss of satisfiability the instance may be reduced assigning all variables not contained in equations
to 0.

2 SATO01 as maximum weight independent set problem

In the contradiction graph I'(X, B) we introduce vertex weights w = (wj);=1.., such that
m
wj = Z aij. (5)
i=1

2

In other words, vertex j has a weight equal to the number of equations containing x;, or w; is
cardinality of the subset M;. As usually, denote the weighted independence number of I'(X, B)
by a(T', w).

Lemma 1 o(T',w) < m. There is a one-to-one correspondence between solutions to SAT01(A,T")
and T'(X, B) independent sets of weight m.

Proof. Let S C X and }_,cgw; > m. By the definition of w, it is equivalent to

m
Z Z aij > M.
jesi=1
As A is a 0-1 matrix, it means that there are totally more than m 1-entries in the columns, whose
indices are in S. However, there are only m rows. So, according to the pigeonhole principle,
there is at least one row with more than one 1-entry in those columns. Thus, S contains at least
one pair of adjacent vertices and so it is not an independent set. Hence o(G,w) < m.

Since a SAT01(A,T") solution = defines a partition of the m-element ground set into subsets
{M; : x; =1} and w; = |Mj]|, it is easy to see that I(z) has the weight m. Conversely, any
independent set S C X of weight m uniquely defines a SATO01(A,I") solution x, where z; =1
if je Sand z; =0if j € X\ S. At that, S = I(x). So, there is a bijection between SAT01
solutions x and the independent sets I(x) having the weight m. QED.

Now we establish the main result on the weighted Lovész number ¢(T', w) of SAT01 contra-
diction graphs. Recall that for any graph G the “sandwich” relation

a(G,w) < Y(G,w) < Kk(G,w) (6)

holds, where
a(G,w) = mgx{wa | x € STAB(G)},
VG, w) = mgx{wa | v € TH(G)},
k(G w) = mgx{wTw | x € QST AB(G)},
since STAB(G) C TH(G) € QST AB(G) [5, 11].
Lemma 2 For any SAT01(A,T), k(I', w) < m.
Proof. Suppose x € QST AB(T"). QST AB is defined as

QSTAB(G) ={z >0 | Z z, < 1 for all cliques @ of G}.
VEQR

This implies that Az < e holds since all inequalities of this system are constraints of QS7 AB(T).
Suming them up, we obtain w’z < m with respect to the definition of w. Hence x(T',w) < m
as claimed. QED.

Theorem 1 For any SAT01(A,T), 9(T',w) < m.
Proof. This follows immediately from Lemma 2 and the “sandwich” inequality (6). QED.

Therefore, we may say that the inequality ¥(I', w) < m—e for some fixed 0 < € < 1 designates
an easily recognizable subclass of unsatisfiable SAT01 instances. In the other cases, SATO01 is
equivalent to deciding whether a(T',w) = m provided m — e < g(I',w) < m.

3 SATO01 propagation

SATO1 formalism is also convenient for a constraint propagation technique exploring contra-
dictory relations among variables. Together with the unit propagation and variables reduction
rules it allows for simplification of many SAT01 instances and augmentation of the contradiction
graph by new edges. The latter may decrease ¥(I', w) — (', w) > 0 gap and improve the chance
that an unsatisfiable SATO01 instance is recognizable via J(I',w) < m inequality.

The SATO01 propagation technique is based upon three rules.

1. Unit propagation. If an equation of (3) has only one variable, this variable must equal 1;
if a variable is assigned 1, all variables contradicting to it must be assigned 0 and reduced;
if all variables of an equation are eventually assigned 0, this equation is unsatisfiable and
so the whole instance is unsatisfiable too.

2. Clique analysis. If there is a variable contradicting to all variables of an equation, it
must be assigned 0 and reduced (otherwise the equation cannot be satisfied.) In other
words, if some equation does not correspond to a maximal clique of I'(X, B), all variables
corresponding to vertices fully connected with the equation clique must be reduced.

3. Contradiction analysis. If there are two variables x; and xj not contradictory & priori
and an equation > ,xy = 1 such that V¢ ((j,£) € B) V ((k,¢) € B), then z; and x}, are
contradictory, so a new edge (j, k) should be introduced in I'(X, B).

These three rules are applied iteratively until no more variables can be reduced and no new
edges can be introduced. Since each of the rules can be checked in polynomial time and the
total amount of operations over an instance cannot be more than the number of variables plus
the number of non-edges of the contradiction graph, we conclude that SAT01 propagation can
be performed in polynomial time. The exact complexity, however, significantly depends on
implementation of the procedure.

4 Polynomial reduction to SATO01

From the theory of N P-completeness it is known that all N P-complete problems are polyno-
mially equivalent. However, if we arbitrarily take two N P-complete problems, most probably
it will not be easy to reduce them to each other. Moreover, if we find such a reduction, we will
face a need to introduce a lot of artificial variables or “gadgets” within the new formulation.
These gadgets tend to have no interpretation within the original problem. Besides, it gives a
significant increase for the problem size. So, reductions within NP seemed having no practical
use for solving methods.

However, all reductions to SATO01 we considered give natural new variables and such con-
straints that, in essence, are reformulation of original constraints in terms of contradictions. In
general, we consider any problem to be a certain set of contradictions among demands that
exist in the problem universe. From this viewpoint SATO01 is a very natural framework for NP
problems. Here we show some illustrative examples.

4.1 CNF satisfiability problem (SAT)

CNF-SAT (or simply SAT) was historically the first problem proven to be N P-complete [1, 2].
It consists in determining existence of a satisfiable assignment for a boolean formula f(x) given

4

in conjuctive normal form. To reduce SAT to SATO01, we replace each clause C' = €1Vl V...V
of f(x) by an equation

b4+ (G Nl) + o+ (LA A AN E) = 1. (7)

We introduce all conjunctions of literals appearing in the obtained equations as new 0-1 variables.
To determine & priori contradictions among them we look for pairs containing a common variable
of the original SAT problem. If the variable is negated in one conjunction of the pair but not
negated in the other, then the pair is contradictory & priori, so we connect them by an edge in
the SATO1 contradiction graph. We note that if f(z) has m clauses and L; is the length of i-th
clause, the obtained SAT01 instance has m equations and not more than)", L; variables.

Claim 2 The obtained SATO01 instance is satisfiable iff f(x) is satisfiable.

Proof. If x is a solution to the original SAT instance, all equations (7) are satisfied because
exactly one of the left-hand side items equal 1. Namely, it is j-th item if /; if the first true literal
of C.

Conversely, if we have a solution to the SATO01 instance, we select the conjunctions of literals
that are equal to 1 and assign all of those literals to satisfy the conjunctions. Due to construction
of the SAT01 contradiction graph, any case when both a literal ¢ and its negation ¢ should
be true is impossible. This literals assignment gives proper values to the subset of variables
{z;} appeared in them. The remaining free variables may be assigned arbitrary. The obtained
assignment satisfy f(x) because each clause C' has at least one true literal ¢; if the j-th left-hand
side item of the corresponding equation (7) equals 1. QED.

4.2 Hamilton cycle problem (HCP)

Hamilton cycle problem is an N P-complete problem asking whether there is a simple cycle in
a given graph G(V, E), |V| = n, involving all its vertices [1]. Introduce a two-dimensional array
of 0-1 variables X = (xj;)nxn and construct a SAT01 instance over them. Let x;; denote “i-th
vertex of an HC is j-th vertex of G”. The HC definition may be, in essence, formulated as
follows:

e There is one and only one i-th vertex of the cycle.
e j-th vertex of G is met in the cycle exactly once.

o If j-th vertex of G is i-th vertex of the cycle and k-th vertex of G is ((¢ mod n) + 1)-th
vertex of the cycle, then (j, k) € E.

The first two conditions mean that X must be a permutation matrix, that is

Vi=1...n Z?:lmijzla (8)
ijl...n Z?leij:L

The third condition imposes additional contradictions among the variables. Namely, if
(p= (i mod n) + 1) A ((j,q) ¢ E), (9)
then z;; and xp, are contradictory & priori.

Claim 3 G is hamiltonian iff the obtained SATO1 instance is satisfiable.

Proof. Assume G is hamiltonian and C = (v1,vg,...,v,) is its hamilton cycle. Assign
Tly, = T2py = ... = Tpy, = 1 and all the other variables z;; = 0. It is easy to see that this
assignment obeys (8) and does not create contradictions by (9). So, if G has a hamilton cycle,
the SATO1 instance is satisfiable.

Conversely, if X = (z;;) is a solution to the SATO1 instance, it is a permutation matrix
according to (8). So, each of its rows contains a 1-entry. Let them be z1,, = T2y, = ... = Ty, =
1. Then, if no two of these variables are contradictory according to (9), C' = (vi,ve,...,v,) is
its hamilton cycle. QED.

The obtained SATO1 instance involves n? variables and 2n equations. We note that it defines
HC up to a starting vertex shift. That is, though, for example, (v, va,...,v,) and (va, ..., vy, v1)
are the same HC, the corresponding SATO01 solutions are different. Thus, we may additionally
simplify the obtained SATO01 instance assigning one arbitrary x;; to 1 from the beginning (say,
Tr11 = 1)

4.3 Graph isomorphism

Graph isomorphism is, apparently, the only natural NP problem, which is not known to be
either polynomial or N P-complete. It considers two graphs G1(V1, E1) and Ga(Va, E2) and asks
for a bijection f : Vi — Vi such that it also creates a bijection for edges: (f(v1), f(v2)) € Eo
iff (vi,v2) € Ey. Without loss of generality, let [Vi]| = |Vo| = {1...n} (if |V1] # |V2|, a graph
isomorphism is trivially impossible.) Similar to the HCP—SATO01 reduction, we introduce a
two-dimensional array of 0-1 variables X = (l‘ij)nxn and construct a SATO01 instance over them.
Let z;; denote f(i) = j. Since f is a bijection, X must again be a permutation matrix and
satisfy (8). The edge bijection condition implies that if

(((i,p) € E1) AN ((G,9) & E2)) V (((6,p) & E1) A ((J,9) € E2)), (10)

then z;; and z,, are contradictory & priori (i.e. if i maps to j and p maps to ¢, then (i,p)
adjacency in G must be the same as (7, ¢) adjacency in Gs.)

Claim 4 G and G2 are isomorphic iff the obtained SATO01 instance is satisfiable.

Proof. It follows directly from the fact that the graph isomorphism definition has been merely
reformulated with the SATO1 notation. QED.

So, we used n? variables and 2n equations to reduce the graph isomorphism problem to
SATO1.

4.4 Subgraph isomorphism problem

This one may be seen as a generalization of the graph isomorphism problem where it is asked
whether one of the graphs is isomorphic to some vertex-induced subgraph of the other graph.
This problem is N P-complete [1]. So, let G1(V4,E1), Vi = {1...m} and Ga(Va, Es), Vo =
{1...n} be two given graph and we look for an injection f : V; — Vi preserving vertex
adjacency: (f(v1), f(v2)) € Eq iff (v1,v2) € E1. We again introduce a two-dimensional array of
0-1 variables X = (2;;)mxn, but impose only one group of equation constraints:

Vi=1...m > ;=1 (11)

The condition (10) for additional are contradictory & priori pairs of variables remains the same.

Claim 5 Gy is isomorphic to some vertex-induced subgraph of Go iff the obtained SATO1 in-
stance is satisfiable.

Proof. Again, the claim is obviously true since (11) together with the variable contradiction
condition (10) just reformulates the subgraph isomorphism definition in terms of 0-1 variables.
QED.

This reduction gives mn variables and m equations in the obtained SAT01 instance.

4.5 Quasigroup completion problem (QCP)

Quasigroup completion problem (or latin square completion) consists in completion an n x n
array with integers from {1...n} to a latin square, provided some of its cells are prefilled. This
problem is N P-complete [6]. To reduce it to SAT01 we express the concept of latin square via
a three-dimensional array of 0-1 values. Namely, let a 0-1 variable z;;x, 7,7,k € {1...n} denote
“Cell (i,7) is filled with number k”. The array of these variables determines a latin square if
and only if

Vi, j g Tijr = 1,

Vi,kj Zj xz’jk = 1, (12)

Vj,k‘ Ez xijk =1.
Let the QCP input be a matrix L = ({;j)nxn such that ¢;; = k € {1...n} if the cell (¢,7) is
prefilled with %, and ¢;; = 0 otherwise. Correspondingly, the number of holes h is the total
number of entries (¢, j) such that ¢;; = 0. Without loss of generality we assume that this input
does not immediately violate the latin square constraints. That is, ¢;; = ;4 > 0, j # q or
li; = €y > 0, i # p cases never occur. Otherwise, the QCP instance is trivially unsatisfiable.
We consider only those variables X = (z;;;,) for which

(&j = 0)&(Vp : fpj 7& k)&(Vq : Eiq 7'5 k) (13)

holds. That is, we select the variables not chosen in and not contradicting & priori to the given
prefilling.

Claim 6 The system (12) taken over variables (x;5) whose indices obey (13) is satisfiable iff
the QCP instance given by L is satisfiable.

Proof. Validity of this claim directly follows from the meaning of variables (z;;) and the
condition (13) on chosen (i, j, k) triples. QED.
So, QCP for an n x n array is reduced to a SAT01 instance having not more than n? variables.

4.6 Extended 15-puzzle

The extended 15-puzzle is the generalization of the well-known 15-puzzle for m x n board. It is
N P-hard [7]. So if we fix the number of turns 7', we obtain an N P-complete problem. To reduce
it to SAT01 we introduce 0-1 variables X = (2;5), t =0...T, k=1...mn—1,i=1...m,
Jj=1...n. x4,; means that on turn ¢ number % is in position (4, j). The system of equations is

Vi kY Y w =1 (14)
i

(any time any number takes one and only one position). The variable conflicts not induced by
equations are

® 1y contradicts xy;; for k # | (not more than one number may be in one position)

o Ty, contradicts T4y gpg if |4 — p| + |7 — ¢ > 1 (a number cannot move off farther than to
one of four nearest positions)

® 1y contradicts x4, for k # [(at least two turns are needed to replace a number by
another)

After all, we determine the initial configuration assigning wo;; appropriately and the goal
configuration assigning zry;; =1 for k = (i — 1)n + j.

Claim 7 The obtained SATO1 instance is satisfiable iff m x n extension of the 15-puzzle is
solvable within T turns.

Proof. The claim follows directly from the construction of the considered SAT01 instance.
QED.

So, we reduced m x n extension of the 15-puzzle to a SATO01 instance of mn(mn —1)(T' + 1)
variables and (mn — 1)(7"+ 1) equations assuming not more than 7" steps are required to solve
the puzzle.

4.7 Hanoi tower puzzle

Let a 0-1 variable x;; means “on turn ¢ block £ is moved from pile ¢ to pile j.” At that,
t=1...T,k=1...n,i=1...3,j=1...3, where T is the fixed number of turns to solve the
puzzle and n is the number of blocks. Assuming x; = 1 for block k remaining in pile 7 on turn
t, we obtain the following system of equations

vt Dok 2o Dojti Ttkij = 1 (15)
Vvt Vk 202 Tekij = 1

The first means that for each turn there is one and only one movement. The second means that
each block takes one and only one place. Additional & priori contradictions are

o Iy;; contradicts x4, 1 kpq Whenever j # p (a block’s movements must be a chain);

o x4, contradicts xy;; when i # j and [> k (a block cannot be put down on a pile if there
is a smaller block);

o x4,;; contradicts xy;; when i # j and [< k (a block cannot be moved if there is a smaller
block in the same pile that anyway must be above).

We also should define the initial and the goal configuration assigning some variables & priori.
For the classic conditions of the puzzle, when we need to transfer all blocks from the first pile to
the third, 1211 — 1311 — ... = T1nll — 1, all xllij except 1112 and T1113 are zeroes; all leij
except TT113 and I123 are zZeroes, r79233 — 7333 — ... — XTnp33 = 1.

Claim 8 The obtained SATO01 instance is satisfiable iff the Hanoi tower puzzle is solvable within
T turns.

So, we reduced the Hanoi tower puzzle for n blocks and T turns allowed to a SAT01 instance
of 9T'n variables and T'(n + 1) equations.

4.8 Blocksworld problem

This well-known AI planning problem has been considered in a number of papers, e.g. [9, 13, 14],
concerning SAT-based approach to Al planning. We present here an alternative SAT01-based
approach to the problem.

Thus, let a 0-1 variable x;; means “on turn ¢ block ¢ is on j”. At that ¢t € {0...T},
i€ {l...n}, j € {1...n} U {table}, i # j, where T is the last turn for obtaining the goal
configuration and n is the number of blocks. On each odd turn we handle some clear block to
an arm and on each even turn we put the handled block down on another clear block or on the
table. So, introducing variables 0-1 variables ay; for all odd ¢ (which mean “on turn ¢ block i is
in the arm”) we may obtain the following equations:

Vevent Vi Z x5 =1
J

Voddt Vi an+» auj=1 (16)
J

Y odd t D a=1.

The first and the second mean that on each turn each block takes one and only one position,
the third means that one and only one block is in the arm on each odd turn. Now as usual we
complete the contradiction graph by not equation-induced variable conflicts.

e 14 contradicts x4,; whenever i # k and j is not the table (not more than one block may
be on any other block);

e 14 contradicts x4, whenever j # [(at least two turns are needed to move a block to
another position (the first one is for handling and the second one is for putting down));

o x4 contradicts Ty41kj, Tir2kj, Ti43k; Whenever ¢ # k and j is not the table; if ¢ is odd,
xyi; contradicts zy4 4 as well (four turns on even t and five turns on odd ¢ are needed to
change the block above through handling)

e a;; contradicts z;; whenever |t — 7| < 2 (the temporary distance between the handling of
a block and a moment when there is another block on it is at least three turns).

So, we reduced a blockworld instance for n blocks and 7'+ 1 turns to a SATO1 instance of
n?(T + 1) +n(T/2 — 1) variables and nT + n(T/2 — 1) equations.

4.9 Bitwise arithmetics

Coding bitwise arithmetic is crucial, for example, for reduction of the factoring problem. After
a SATO1 equivalent of bitwise addition/subtraction is obtained, Factoring—SATO01 reduction
is pretty straightforward, but still somewhat ponderous to describe explicitly in a paper not
specifically dedicated to this problem. So, we confine the present description to bitwise addi-
tion/subtraction reduction to SATO01.

Thus, consider bitwise addition of two numbers: a + b = ¢. Let all the numbers have n bits
in the binary form. So, we have 0-1 variables aq,...,a,—1,b0,...,bp—1,¢o,...,Cn—1. For zeroth
bits we have

co = (ao A b()) V ((]7)/\ bo).

Since B B
(@o A bo) + (ag Abo) + (ag A bo) + (ap A bg) =1,

we can form the following equation for cg:

co + (@ A bg) + (ag Abg) = 1. (17)
So, (@ A by) and (ap A bg) are introduced as new 0-1 variables.
Next, we introduce new 0-1 variables dy, ..., d,_o for carries. dyp must obey the equation
do + (ag A by) + (ap A bo) + (ag A bg) = 1. (18)

So, (ag A 'bp) and (@g A by) are also new 0-1 variables.

Equations for middle bits are more complex since there is a carry from the previous bit. We
must introduce new 0-1 variables (a; Abj Ad;_1),...,(aj Abj Ad;j_1), and using them we impose
the following constraints on c¢; and d;:

¢j + (@ Abj Adj—1) + (a; Abj Adj1) + (aj Abj Adj—1) + (@ Abj Adj1) =
dj + (@j Nbj Ndj1) + (aj Abj Adj1) + (@5 Abj Adja) + (@j Abj Adja) =

1
1 (19)

For the last bit there is no carry and thus, there are only four new 0-1 conjunctive variables.
However, there are two equations again (the second one prohibits a carry):

Cn—1+ (an—l Nbp_1 A dn—?) =1
(an—l Abp_1 A dn—2) + (an—l Abp_1 A dn—2) + (an—l ANbp_1 A dn—2) + (an—l Abp_1 A dn—2) =1
(20)
So, (17,18,19,20) define the necessary SAT01 system of equations. Finally, we must reveal all
contradictory & priori pairs of the introduced variables as in the conversion from SAT: those
having a common conjunct but with opposite negation signs cannot equal 1 simultaneously.

5 Informational foundation of SAT01 formalism

First of all, what is a problem? A problem (in the broad sense, including non-mathematical)
is an equation P(x) = true where z is a looked-for object of some universe and P is a given
predicate defined over the universe. Indeed, whenever we face a problem, we are looking for
something called a “solution” that may be a value of a variable, a proof of a theorem, an action
in our life, etc. Under an appropriate formalization we can rigorously define the universe of
objects having the form of a solution and — when the problem is mathematical — the objective
predicate P too. Now we assume that P can be represented as a conjunction of simple demands
over x (clauses) that easily can be satisfied separately. It is completely true for NP problems.
At that the main hardness is to satisfy all clauses at once. Here are some examples.

e SAT. Each clause is an OR-clause. It can be satisfied in 2¥ — 1 ways where k is its length.

o A system of linear equations and inequalities. Each equation/inequality is a clause. An
appropriate assignment satisfying a single constraint is obvious (e.g., assign all but one
contained variable to zero and solve ax = b equation for the last free variable.)

e HCP. x is a sequence of graph vertices. The first group of clauses asserts that any two
successive vertices (including the last to the first) must be joined by an edge. And the
final clause is the assertion: “the sequence x is a permutation of all graph vertices”.

10

Now, when a problem is easy and when it is hard? The first easy case is when contradictions
between clauses are not significant. That is, when we decide how to satisfy one clause, we do not
make any obstacles to satisfy others. This case is not interesting because the problem should
have a lot of solutions to be such one, whereas actual hard problems have a few only or even
none solutions. So, the second case if each particular clause gives lots information about feasible
values of contained in it variables. Imagine that in SAT we have not V- but A-clauses i.e., as
soon as a variable is included in a clause, its value is defined. Then to solve the problem we
need just verify is there a contradictory pair of literals. A less extreme example is when each
clause strongly determines one variable. In this case the problem should probably be easy too,
as many variables can be reduced just in input.

Thus, we may say that in a suitable formulation for NP problems every clause must be as
informative as possible. Now, calculate information given by one V-clause of length k. There
are 2% possibilities to assign k boolean variables, the clause rejects one only, so

ok _ 1

ok = k —logy (2% —1). (21)

Icnf = - 10g2

This value vanishes very quickly when & — oco. From the algorithmic viewpoint it means that
for arbitrary k-SAT it is almost useless to process particular subsets of clauses — if such a subset
is not very large, you can take almost none information about solution from it; but if the subset
is large, it should be very difficult to grasp all its clauses simultaneously!

Hence we may conclude: V-clauses are the worst as they are almost uninformative! And
perhaps, SAT is the worst choice to overcome N P-hardness!

Now we do similar informational computations for SATO01. First, for a SAT1 equation k of
2k possibilities remain, so
2% =k —log, k. (22)
It is easy to see that this value tends to infinity for & — co. Moreover, as it is impossible to allow
less than k assignments for a clause of length & in general case (otherwise some variables can be
immediately reduced), SAT1 equations are most informative constraints over 0-1 variables!

An additional binary contradiction has information

Isatl = - 10g2

Zsato = —logy % ~ 0.415 bits. (23)

6 Conclusions

We have presented a promising formalism providing an opportunity to consider NP problems
from a unified viewpoint and decide their hardness on the basis of the contradiction graph’s
Lovész number value in particular instances. We also have substantiated this choice by an in-
formation theory argument. Hopefully, the SAT01 analysis will find a broad application among
researchers of particular NP problems as an alternative approach to investigate properties of
those problems. Apart from this, SATO1 research should stimulate development of faster meth-
ods for computation of the Lovdsz number and its improvements [8, 15]. In conjunction with
the presented results such methods should give numerous new opportunities for solving various
N P problems efficiently in practice.

11

References

1]

2]

[3]

M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness (Freeman & Co., 1979).

S.A. Cook, The complexity of theorem-proving procedures, In: Conference Record of 3rd
Annual ACM Symposium on Theory of Computing, Shaker Heights, Ohio (1971) 151-158.

E. Balas and M. Padberg, Set partitioning: a survey, SIAM Review, 18 (1976) 710-760.

T. J. Schaefer, The complexity of satisfiability problems, Conference Record of the 10th
Annual ACM Symposium on Theory of Computing, 1-3 May, San Diego, California (1978)
216-226.

L. Lovész, On the Shannon capacity of a graph, IEEE Trans. Inform. Theory 25:1 (1979)
1-7.

C. Colbourn, The complexity of completing partial latin squares, Discrete Applied Mathe-
matics, 8 (1984) 25-30.

D. Ratner and M. Warmuth, Finding a shortest solution for the (N x N)-extension of the
15-puzzle is intractable, Journal of Symbolic Computation, 10 (1990) 111-137.

L. Lovéasz and A. Schrijver, Cones of matrices and set-functions and 0-1 optimization, STAM
J. Optim. 1:2 (1991) 166-190.

H. Kautz and B. Selman, Planning as satisfiability, In Proc. ECAI-92, (1992) 359-363.

K. Hoffman and M. Padberg, Solving airline crew scheduling problems by branch-and-cut,
Management Science, 39 (1993) 657-682.

D.E. Knuth, The Sandwich Theorem, Elec. J. Comb. 1 (1994).

D. Levine, A parallel genetic algorithm for the set partitioning problem, Technical Report
MCS-P458-0894, Argonne National Laboratory (1994).

H. Kautz and B. Selman, Pushing the envelope: planning, propositional logic, and stochastic
search, In: Proc. AAAI-96 (1996).

H. Kautz and B. Selman, The role of domain-specific knowledge in the planning as satisfi-
ability framework, In: Proc. AIPS-98 (1998).

E. de Klerk and D. Pasechnik, Approximation of the stability number of a graph via copos-
itive programming, SIAM J. Optim. 12:4 (2001) 875-892.

12

