
A new trust region technique for the

maximum weight clique problem

Stanislav Busygin

Industrial and Systems Engineering Department, University of Florida, 303 Weil
Hall, Gainesville, FL 32611, USA

Abstract

A new simple generalization of the Motzkin–Straus theorem for the maximum weight
clique problem is formulated and directly proved. Within this framework a trust re-
gion heuristic is developed. In contrast to usual trust region methods, it regards not
only the global optimum of a quadratic objective over a sphere, but also a set of
other stationary points of the program. We formulate and prove a condition when
a Motzkin–Straus optimum coincides with such a point. The developed method has
complexity O(n3), where n is the number of vertices of the graph. It was imple-
mented in a publicly available software package QUALEX-MS.

Computational experiments indicate that the algorithm is exact on small graphs
and very efficient on the DIMACS benchmark graphs and various random maximum
weight clique problem instances.

Key words: maximum weight clique, Motzkin–Straus theorem, quadratic
programming, heuristics, trust region

1 Introduction

Let G(V,E) be a simple undirected graph, V = {1, 2, . . . , n}. The adjacency
matrix of G is a matrix AG = (aij)n×n, where aij = 1 if (i, j) ∈ E, and aij = 0
if (i, j) /∈ E. The set of vertices adjacent to a vertex i ∈ V will be denoted by
N(i) = {j ∈ V : (i, j) ∈ E} and called the neighborhood of the vertex i. A
subgraph G′(V ′, E ′), V ′ ⊆ V will be called induced by the vertex subset V ′ if
(i, j) ∈ E ′ whenever i ∈ V ′, j ∈ V ′, and (i, j) ∈ E, and E ′ includes no other
edges. A clique Q is a subset of V such that any two vertices of Q are adjacent.
It is called maximal if there is no other vertex in the graph connected with all

Email address: busygin@ufl.edu (Stanislav Busygin).

Preprint submitted to Elsevier Science October 23, 2003

vertices of Q. Similarly, an independent set S is a subset of V such that any
two vertices of S are not adjacent, and S is maximal if any other vertex of the
graph is connected with at least one vertex of S. A graph is called complete
multipartite if its vertex set can be partitioned into maximal independent sets
(parts) and any two vertices from different parts are adjacent. Obviously, a
clique is a complete multipartite graph, whose all parts are single vertices.

The maximum clique problem asks for a clique of maximum cardinality. This
cardinality is called the clique number of the graph and is denoted by ω(G).

Next, we associate with each vertex i ∈ V a positive number wi called the
vertex weight . This way, along with the adjacency matrix AG, we consider the
vector of vertex weights w ∈ Rn. The total weight of a vertex subset S ⊆ V
will be denoted by

W (S) =
∑
i∈S

wi.

The maximum weight clique problem asks for a clique Q of the maximum
W (Q) value. We denote this value by ω(G,w).

Both the maximum cardinality and the maximum weight clique problems are
NP -hard [2], so it is considered unlikely that an exact polynomial time al-
gorithm for them exists. Approximation of large cliques is also hard. It was
shown in [16] that unless NP = ZPP no polynomial time algorithm can ap-
proximate the clique number within a factor of n1−ε for any ε > 0. Recently
this margin was tightened to n/2(logn)1−ε [17]. Hence there is a great need in
practically efficient heuristic algorithms. For an extensive survey of developed
methods, see [14]. The approaches offered include such common combinatorial
optimization techniques as sequential greedy heuristics, local search heuristics,
methods based on simulated annealing, neural networks, genetic algorithms,
tabu search, etc. Among the most recent and promising combinatorial algo-
rithms are the augmentation algorithm based on edge projection by Mannino
and Stefanutti [10] and the decomposition method with penalty evaporation
heuristic suggested by St-Louis, Ferland, and Gendron [21].

Finally, there are methods utilizing various formulations of the clique problem
as a continuous (nonconvex) optimization problem. The most recent methods
of this kind include PBH algorithm by Massaro, Pelillo, and Bomze [11], and
Max-AO algorithm by Burer, Monteiro, and Zhang [4]. The first one is based
on linear complementarity formulation of the clique problem, while the second
one employs a low-rank restriction upon the primal semidefinite program com-
puting the Lovász number (ϑ-function) of a graph. In this paper we present
a continuous maximum weight clique algorithm named QUALEX-MS (QUick
ALmost EXact Motzkin–Straus-based.) It follows the idea of finding stationary

2

points of a quadratic function over a sphere for guessing near-optimum cliques
exploited in QUALEX and QSH algorithms [5,22]. However, QUALEX-MS is
based on a new generalized version of the Motzkin–Straus quadratic program-
ming formulation for the maximum weight clique, and we attribute its better
performance to specific properties of its optima also discussed in this paper.
A software package implementing QUALEX-MS is available at [22].

The paper is organized as follows. In Section 2 we revise the Motzkin–Straus
theorem to use the quadratic programming formulation for the maximum
weight clique problem. Section 3 reviews the trust region problem and finding
its stationary points. In Section 4 we provide a theoretical result connecting
the trust region stationary points with maximum clique finding and formulate
the QUALEX-MS method itself. Section 5 describes computational experi-
ments with the algorithm and their results. In the final Section 6 we make
some conclusions and outline further research work.

2 The Motzkin–Straus theorem for maximum clique and its gen-
eralization

In 1965, Motzkin and Straus formulated the maximum clique problem as a
certain quadratic program over a simplex [13].

Theorem 1 (Motzkin–Straus) The global optimum value of the quadratic
program

max f(x) =
1

2
xTAGx (1)

subject to∑
i∈V

xi = 1, x ≥ 0 (2)

is

1

2

(
1− 1

ω(G)

)
. (3)

See [3] for a recent direct proof. We formulate a simple generalization of this
result for the maximum weight clique problem and prove it similarly to [3]. In
contrast to the generalization established in [7], this one does not require any
reformulation of the maximum clique quadratic program to another minimiza-

3

tion problem. It maximally preserves the form of the original Motzkin–Straus
result.

Let wmin be the smallest vertex weight existing in the graph. We introduce a
vector d ∈ Rn such that

di = 1− wmin

wi
.

Consider the following quadratic program:

max f(x) = xT (AG + diag(d1, . . . , dn))x (4)

subject to∑
i∈V

xi = 1, x ≥ 0. (5)

First, we formulate a preliminary lemma.

Lemma 2 Let x′ be a feasible solution of the program (4,5) and (i, j) /∈ E
be a non-adjacent vertex pair such that x′i > 0, x′j > 0, and (without loss of

generality) ∂f
∂xi

(x′) ≥ ∂f
∂xj

(x′). Then the point x′′, where

x′′i = x′i + x′j, x′′j = 0, x′′k = x′k, k ∈ V, i 6= k 6= j, (6)

is also a feasible solution of (4,5) and f(x′′) ≥ f(x′). The equality f(x′′) =
f(x′) holds if and only if wi = wj = wmin and

∑
k∈N(i) x

′
k =

∑
k∈N(j) x

′
k.

PROOF. It is easy to see that x′′ satisfies the constraints (5) and hence it
is a feasible solution. Now we show that this solution is at least as good as
x′. Since (i, j) /∈ E, aij = 0 and there is no xixj term in the objective f(x).
So, we can partition f(x) into terms dependent on xi, terms dependent on xj,
and the other terms:

fi(x) = dix
2
i + 2xi

∑
k∈N(i)

xk,

fj(x) = djx
2
j + 2xj

∑
k∈N(j)

xk,

f ij(x) = f(x)− fi(x)− fj(x).

The partial derivatives of f(x) with respect to xi and xj are:

4

∂f

∂xi
=
∂fi
∂xi

= 2dixi + 2
∑

k∈N(i)

xk,

∂f

∂xj
=
∂fj
∂xj

= 2djxj + 2
∑

k∈N(j)

xk.

We have f ij(x
′′) = f ij(x

′) and fj(x
′′) = 0, so to compare f(x′′) to f(x′) we

should evaluate fi(x
′′) and compare it to fi(x

′)+fj(x
′). In these computations

we take into account that di and dj are always nonnegative:

fi(x
′′) = di(x

′
i + x′j)

2 + 2(x′i + x′j)
∑
k∈N(i) x

′
k =

fi(x
′) + 2dix

′
ix
′
j + di

(
x′j
)2

+ 2x′j
∑
k∈N(i) x

′
k =

fi(x
′) + x′j

(
2dix

′
i + 2

∑
k∈N(i) x

′
k

)
+ di

(
x′j
)2

=

fi(x
′) + x′j

∂fi
∂xi

(x′) + di
(
x′j
)2
≥ fi(x

′) + x′j
∂fj
∂xj

(x′) + di
(
x′j
)2
≥

fi(x
′) + x′j

∂fj
∂xj

(x′) = fi(x
′) + 2dj

(
x′j
)2

+ 2x′j
∑
k∈N(j) x

′
k ≥

fi(x
′) + dj

(
x′j
)2

+ 2x′j
∑
k∈N(j) x

′
k = fi(x

′) + fj(x
′).

(7)

Hence f(x′′) ≥ f(x′). Next, we observe that all the ≥-relations in (7) become

equalities if and only if di = dj = 0 and ∂fi
∂xi

(x′) = ∂fj
∂xj

(x′). The first imme-

diately implies wi = wj = wmin, and together with the second it means that∑
k∈N(i) x

∗
k =

∑
k∈N(j) x

∗
k. This completes the proof of the lemma. 2

Now we are ready to establish the generalized version of the Motzkin–Straus
theorem.

Theorem 3 The global optimum value of the program (4,5) is

1− wmin

ω(G,w)
. (8)

For each maximum weight clique Q∗ of the graph G(V,E) there is a global
optimum x∗ of the program (4,5) such that

x∗i =

wi/ω(G,w), if i ∈ Q∗

0, if i ∈ V \Q∗.
(9)

PROOF. Let us define the support of a feasible solution x′ as the set of indices
of nonzero variables V ′ = {i ∈ V : x′i > 0}. From Lemma 2 it follows that the
program (4,5) has a global optimum whose support is a clique. Indeed, if x′

5

is a global optimum such that for some non-adjacent vertex pair (i, j) /∈ E,
x′i > 0 and x′j > 0, then the point x′′ defined in (6) is also a global optimum.
Using this property we can always obtain a global optimum x∗ whose support
is a clique Q∗. Now we show that Q∗ is necessarily a maximum weight clique.

Indeed, in the subspace {xi} : i ∈ Q∗ we have the program:

max f(x) =
∑
i∈Q∗

dix
2
i +

∑
i∈Q∗

∑
j∈Q∗
j 6=i

xixj (10)

subject to
∑
i∈Q∗

xi = 1.

The objective may be transformed to

∑
i∈Q∗

xi

2

−
∑
i∈Q∗

wminx
2
i

wi
.

The first term is equal to 1 due to the constraint, so we may consider an
equivalent program:

∑
i∈Q∗

x2
i

wi
→ min

The Lagrangian of the program is

∑
i∈Q∗

x2
i

wi
+ λ

∑
i∈Q∗

xi − 1

 .

It is easy to see it has the only stationary point

xi =
wi

W (Q∗)
, i ∈ Q∗; λ =

2

W (Q∗)
,

and this point is the minimum. So, x∗i = wi/W (Q∗), i ∈ Q∗.

Evaluate the objective f(x∗). It is

1−
∑
i∈Q∗

wmin (x∗i)
2

wi
= 1−

∑
i∈Q∗

wminw
2
i

wi(W (Q∗))2
= 1− wmin

W (Q∗)
.

6

This value is largest when W (Q∗) is largest, so the objective attains a global
optimum when Q∗ is a maximum weight clique. Therefore,

max f(x) = f(x∗) = 1− wmin

ω(G,w)
.

Finally, it is easy to see that for any maximum weight clique Q∗∗ the point
x∗∗ defined as

x∗∗i =

wi/ω(G,w), if i ∈ Q∗∗

0, if i ∈ V \Q∗∗

provides the objective value (8). So, each maximum weight clique has a global
optimum of the program (4,5) corresponding to it as claimed. 2

We extend Theorem 3 by the following result characterizing global optima of
(4,5):

Theorem 4 Let x∗ be a global optimum of the program (4,5) and G∗(V ∗, E∗)
be the subgraph induced by the support V ∗ = {i ∈ V : x∗i > 0} of x∗. Then
G∗ is a complete multipartite graph, whose any part may have more than one
vertex only if all vertices of this part have the same weight wmin, and any
maximal clique of G∗ is a maximum weight clique of the graph G(V,E).

PROOF. First we prove that if the subgraph G∗ includes a non-adjacent
vertex pair (i, j) /∈ E, then the vertices i and j necessarily have in it the
same neighborhood. Lemma 2 necessitates the conditions wi = wj = wmin and∑
k∈N(i) x

∗
k =

∑
k∈N(j) x

∗
k. Suppose there is some ` ∈ V ∗ such that (i, `) ∈ E

while (j, `) /∈ E. Then Lemma 2 also necessitates w` = wmin and
∑
k∈N(`) x

∗
k =∑

k∈N(j) x
∗
k. Obtain the point x∗∗ from x∗ by altering only two coordinates:

x∗∗i = x∗i + x∗j/2 and x∗∗j = x∗j/2. Obviously, x∗∗ is also a global optimum as
because of the abovementioned conditions the sum of terms of the objective
dependent on xi or xj remains the same. But now∑

k∈N(`)

x∗∗k =
∑

k∈N(`)

x∗k + x∗j/2 =
∑

k∈N(j)

x∗∗k + x∗j/2 >
∑

k∈N(j)

x∗∗k ,

so the value f(x∗∗) can be improved by increasing x∗∗` while further decreasing
x∗∗j . Hence neither x∗∗ nor x∗ is a global optimum, and we have obtained
a contradiction. Similarly, we can show that there is no ` ∈ V ∗ such that
(j, `) ∈ E while (i, `) /∈ E. Thus, i and j have the same neighborhood in G∗.

7

Now it is easy to see that maximal independent sets of G∗ do not intersect,
and hence it is a complete multipartite graph. As it can have a non-adjacent
pair of vertices only if both vertices of this pair have the weight wmin, we
obtain that G∗ cannot have multivertex parts with vertices of another weight.
Next, using the transformation (6) for each non-adjacent vertex pair in G∗, we
can arrive at another global optimum whose support is an arbitrary maximal
clique of G∗. As we have shown in the proof of Theorem 4, it implies that
this clique is a maximum weight one. Therefore, all maximal cliques of G∗ are
maximum weight cliques of G. 2

Theorem 4 evidences that all global optima of the Motzkin–Straus program
are equally useful for solving the clique problem, and there is no need to drive
out “spurious” optima not corresponding directly to cliques. Even more, a
global optimum whose support includes non-adjacent vertices provides more
information as it reveals immediately a family of optimum cliques.

One may observe that the program (4,5) has similar correspondence of its
local optima to other maximal cliques of the graph. Hence it is complicated to
arrive at an optimum clique applying gradient-based optimization methods to
the Motzkin–Straus program. So, in our work we explore another approach.

For the development of our method we will use a rescaled form of the quadratic
program (4,5). First of all, for the graph G(V,E) with the vertex weights w

define the weighted adjacency matrix A
(w)
G = (a

(w)
ij)n×n such that

a
(w)
ij =


wi − wmin, if i = j
√
wiwj, if (i, j) ∈ E

0, if i 6= j and (i, j) /∈ E.

(11)

Obviously, it is the ordinary adjacency matrix when all vertex weights are
ones. Next, we introduce the vector of vertex weight square roots

z ∈ Rn : zi =
√
wi. (12)

The rescaled formulation is given in the following corollary of Theorem 3.

Corollary 5 The global optimum value of the quadratic program

max f(x) = xTA
(w)
G x (13)

8

subject to

zTx = 1, x ≥ 0 (14)

is

1− wmin

ω(G,w)
.

For each maximum weight clique Q∗ of the graph G(V,E) there is a global
optimum of (13,14) such that

x∗i =

 zi/ω(G,w), if i ∈ Q∗

0, if i ∈ V \Q∗.
(15)

PROOF. Perform the variable scaling xi →
√
wixi in the formulation of

Theorem 3. The corollary is obtained immediately. 2

A useful property of the rescaled formulation is that optima corresponding to
all maximum weight cliques are located at the same distance from the origin.
Now we state this fact formally.

Definition 6 An indicator of a clique Q ⊆ V is a vector xQ ∈ Rn such that

xQi =

 zi/W (Q), if i ∈ Q

0, if i ∈ V \Q.

Proposition 7 All cliques of the same weight σ have indicators located at the
same distance 1/

√
σ from the origin.

PROOF. It follows immediately that the indicator of a clique Q ⊆ V with
the weight W (Q) = σ is a vector of the length√∑

i∈Q
(zi/σ)2 =

√
W (Q)/σ = 1/

√
σ.

2

We may notice here that cliques of larger weight have indicators located closer
to the origin. The indicators of the maximum weight cliques have the smallest

9

radius, namely, 1/
√
ω(G,w). The idea of our method is to replace the non-

negativity constraint x ≥ 0 in (14) by a ball constraint xTx ≤ r2 of a radius

r ≈ 1/
√
ω(G,w) and to regard the stationary points of this new program as

vectors significantly correlating with the maximum weight clique indicators.
In the next section we outline polynomial time finding of stationary points of
a quadratic on a sphere. In our case this technique can be used after the ob-
jective is orthogonally projected onto the hyperplane zTx = 1, so this equality
may be removed from the constraints. In the subsequent section we give a sub-
stantiation of the used constraint replacement proving a particular case when
a spherical stationary point is exactly an optimum of the program (13,14) and
formulate the algorithm itself.

3 The trust region problem

The trust region problem is the optimization of a quadratic function subject
to a ball constraint. The term originates from a nonlinear programming ap-
plication of this problem. Namely, to improve a feasible point, a small ball –
trust region – around the point is introduced and a quadratic approximation
of the objective is optimized in it. Then, if the objective approximation is good
enough within this locality, the ball optimum of the quadratic is very close
to the optimum of the objective there, and it may be taken as the next im-
proved feasible solution. This technique is very attractive in many cases since
the optimization of a quadratic function over a sphere is polynomially solv-
able in contrast to general nonconvex programming [19]. There is a vast range
of other sources describing theoretical and practical results on the trust re-
gion problem [6,8,9,12]. Here we outline the complete diagonalization method
deriving not only the global optimum at a given sphere radius, but all sta-
tionary points corresponding to particular radii we want to consider. That
is, the radius value remains non-fixed up to a final step when it appears as
a parameter of a univariate equation determining the stationary points. We
note that for our application we are interested in hyperbolic objectives only,
so interior stationary points never exist.

Thus, consider finding the stationary points for the problem

f(x) = xTAx+ 2bTx (16)

s.t.
n∑
i=1

x2
i = r2,

where A is a given real symmetric n×n matrix, b ∈ Rn is a given vector, and
x ∈ Rn is the vector of variables. First, we diagonalize the quadratic form in

10

(16) performing eigendecomposition of A:

A = Qdiag(λ1, . . . , λn)QT ,

where Q is the matrix of eigenvectors (stored as columns) and the eigenvalues
{λi} have nondecreasing order. In the eigenvector basis, (16) is

f(y) =
n∑
i=1

λiy
2
i + 2

n∑
i=1

ciyi, (17)

n∑
i=1

y2
i = r2, (18)

and the following relations hold:

x = Qy, y = QTx, b = Qc, c = QT b. (19)

The Lagrangian of (17, 18) is

L(y, µ) =
n∑
i=1

λiy
2
i + 2

n∑
i=1

ciyi − µ
(

n∑
i=1

y2
i − r2

)
. (20)

µ is the lagrangian multiplier of the spherical constraint here. We take it with
negative sign for the sake of convenience. The stationary conditions are

∂L

∂yi
= 0,

∂L

∂µ
= 0.

So,

∂L

∂yi
= 2(λi − µ)yi + 2ci = 0,

and assuming µ 6= λi,

yi =
ci

µ− λi
. (21)

Substituting (21) into the spherical constraint (18), we get

n∑
i=1

c2i
(µ− λi)2

− r2 = 0. (22)

11

The left-hand side of (22) is a univariate function consisting of n+1 continuous
and convex pieces. As all the numerators are positive, in each piece between
two successive eigenvalues of A it may intersect µ-axis twice (determining two
stationary points on the sphere), touch it once (determining one stationary
point), or be over the axis (no stationary point corresponds to these µ values.)
That depends on the chosen radius r: the greater the radius, the more cases
of two spherical stationary points within one continuous piece of (22). Two
outermost continuous pieces are (−∞; λ1) and (λn; +∞). In each of them
(22) always has one and only one root. The root in the first piece is the global
minimum, the root in the second piece is the global maximum.

A degenerate case when µ = λi for some i is possible if ci = 0. Then, if λi is a
multiple eigenvalue of A, all cj corresponding to λj = λi must be equal to zero
to cause the degeneracy. Then all yj such that µ 6= λj should be computed
by (21), and if the sum of their squares is not above r2, any combination of
the rest entries of y obeying (18) gives a stationary point. Formally, we have
a cluster of k equal eigenvalues λi = λi+1 = . . . = λi+k−1 with

ci = ci+1 = . . . = ci+k−1 = 0. (23)

If

r2
0 =

i−1∑
j=1

y2
j +

n∑
j=i+k

y2
j ≤ r2, (24)

where the values yj are computed by (21) with µ = λi, then any yi, yi+1, . . . , yi+k−1

such that

i+k−1∑
j=i

y2
j = r2 − r2

0

provide a stationary point.

So, it is possible then that the number of stationary points is infinite. In our
method we will consider, in the degenerate case, only such points that all but
one of the entries yi, yi+1, . . . , yi+k−1 are zero. There are 2k cases:

yi = ±
√
r2 − r2

0, yi+1 = 0, . . . , yi+k−1 = 0,

yi = 0, yi+1 = ±
√
r2 − r2

0, . . . , yi+k−1 = 0,

· · ·

yi = 0, yi+1 = 0, . . . , yi+k−1 = ±
√
r2 − r2

0,

(25)

12

so an eigenvalue of multiplicity k gives 2k points to consider.

Finally, we note that the total complexity of the above procedure is O(n3) if
we derive O(n) stationary points and it takes not more than O(n2) time to get
one µ value. Indeed, the eigendecomposition may be computed up to any fixed
precision in O(n3) time [18], and each basis conversion in (19) takes quadratic
time, so generally we have one O(n3) computation at the beginning of the
procedure, and O(n) computations of O(n2) complexity each afterwards.

4 The QUALEX-MS algorithm

Thus, we will work with the program

max f(x) = xTA
(w)
G x (26)

s.t. zTx = 1, xTx ≤ r2,

where r is a parameter not fixed á priori. We designate now a particular case,
when a stationary point of the program (26) is an optimum of the program
(13,14). It happens when for each vertex outside a maximum weight clique the
weight sum of adjacent vertices in the clique is constant. Namely, the following
theorem holds.

Theorem 8 Let Q ⊆ V be a maximal clique of the graph G(V,E) such that

∀v ∈ V \Q : W (N(v) ∩Q) = C,

where C is some fixed value. Then the indicator xQ of Q

xQi =

 zi/W (Q), if i ∈ Q

0, if i ∈ V \Q.

is a stationary point of the program (26) when the parameter r = 1/
√
W (Q).

PROOF. Consider the Lagrangian of the program (26). It is

L(xQ, µ1, µ2) = (xQ)TA
(w)
G xQ + µ1(z

TxQ − 1) + µ2((x
Q)TxQ − r2).

13

Its partial derivatives are

∂L

∂xQi
= 2

∑
i∈V

a
(w)
ij x

Q
j + ziµ1 + 2xQi µ2 =

= 2zi

zixQi +
∑

j∈N(i)

zjx
Q
j

− 2wminx
Q
i + ziµ1 + 2xQi µ2.

Let i ∈ Q. Then it gives

∂L

∂xQi
= 2zi

∑
j∈Q

wj
W (Q)

− 2wmin
zi

W (Q)
+ ziµ1 +

2zi
W (Q)

µ2 =

= zi

(
2− 2wmin

W (Q)
+ µ1 +

2µ2

W (Q)

)
.

Conversely, if i ∈ V \Q,

∂L

∂xQi
= 2zi

∑
j∈N(i)∩Q

zjx
Q
j + ziµ1 = zi

(
2C

W (Q)
+ µ1

)
.

We may see that in both cases the partial derivative is the same for each i up to
a nonzero multiplier zi. So, the stationary point criterion system ∂L/∂xQi = 0
is reduced to two equations over two variables µ1 and µ2. The second equation
directly gives

µ1 = − 2C

W (Q)
.

Substituting this into the first equation, we obtain

µ2 = C + wmin −W (Q).

So, there are values of the lagrangian multipliers satisfying the stationary point
criterion. Therefore, xQ is a stationary point of the program (26). 2

We notice that the obtained µ2 value is negative unless the weight of the clique
Q can be increased by a one-to-one vertex exchange. This means that in the
stationary points we are interested in the gradient of the objective is directed
outside the constraining sphere. It is consistent with the fact that we look for
a maximum of the objective.

14

We note a special case of Theorem 8 corresponding to the maximum cardinal-
ity clique problem.

Corollary 9 Let Q ⊆ V be a maximal clique of the graph G(V,E) such that

∀v ∈ V \Q : |N(v) ∩Q| = C,

where C is some fixed value, and all vertex weights wi equal 1. Then the
indicator xQ of Q

xQi =

 1/|Q|, if i ∈ Q

0, if i ∈ V \Q.

is a stationary point of the program (26) when the parameter r = 1/
√
|Q|.

Generally, optima of (13,14) cannot be found directly as stationary points of
(26). However, we accept the assumption that if the parameter r is close to

1/
√
ω(G,w), then the stationary points of (26), where the objective gradient

is directed outside, provide significant information about maximum weight
clique indicators. This may be supported by the fact that the conjunction of
three imposed requirements – maximization of a quadratic form whose matrix
is nonnegative, positive dot product with the positive vector z, and a rather
small norm of the sought vector x – suggests that the vector x should have
rather been composed of positive entries. Thus, we heuristically expect that
violation of the nonnegativity constraint is not very dramatic.

As the next step, we show how to reduce the program (26) to a trust region
problem projecting orthogonally the objective onto the hyperplane zTx = 1.
First, we move the origin into a new point

x0 = z/W (V). (27)

This point is the orthogonal projection of the origin onto the hyperplane
zTx = 1. That is, we introduce new variables x̂ = x− z/W (V). This way we
obtain a new program equivalent to (26):

max g(x̂) = x̂TA
(w)
G x̂+ 2(x0)TA

(w)
G x̂ (28)

s.t. zT x̂ = 0, x̂T x̂ ≤ r̂2,

where r̂2 = r2 − 1/W (V) (here we took into account that (x0)Tx0 = 1/W (V).)
Now the constraining equality determines a linear subspace. The orthogonal

15

projector onto it is a matrix P = (pij)n×n, where

pij =

 1− wi/W (V), if i = j

−√wiwj/W (V), if i 6= j.

Thus, the program (28) may be reformulated as

max g(x̂) = x̂T Âx̂+ 2b̂T x̂ (29)

s.t. x̂T x̂ ≤ r̂2,

where Â = PA
(w)
G P and b̂T = (x0)TA

(w)
G P .

This is a trust region problem – optimization of a quadratic subject to a
single ball constraint. Direct matrix manipulations show that Â and b̂ can be
computed by the formulas

âij = a
(w)
ij − x0

jδ
(w)
i − x0

i δ
(w)
j + x0

ix
0
jD (30)

and

b̂i =
δ
(w)
i − x0

iD

W (V)
, (31)

where

δ
(w)
i =

√
wi(wi − wmin +

∑
j∈N(i)

wj) (32)

(which are vertex degrees in the unweighted case), and

D =
∑
j∈V

wj(wj − wmin) +
∑

(j,k)∈E
wjwk. (33)

Thus, if Q is a maximum weight clique obeying Theorem 8 conditions, its
indicator may be recognized by the trust region procedure described in the
previous section. Generally, we will handle the maximum weight clique prob-
lem in the following way allowing us to preserve the total complexity of the
method in an O(n3) time.

Before applying the trust region technique, we find a possibly best clique Q
by a fast greedy procedure. To improve it, we will try to search for cliques

16

weighing at least W (Q) + wmin using the stationary points of the program
(26). It follows from Proposition 7 that we should be interested in those points,
where

r̂2 =
1

W (Q) + wmin

− 1

W (V)
(34)

or less. In our method we consider the stationary points having this r̂2 value,
plus those corresponding to µ values minimizing the left hand side of (22) in
each continuous section. Since cliques of larger weights correspond to lesser
radii, we have a chance to correct the “shallowness” of the formula (34) con-
sidering the minimum possible radii. Besides, to find stationary points at any
fixed radius, we need to find those minimizing µ values anyway to determine
how many roots (22) has on each continuous section. If the left hand side mini-
mum on a continuous section is negative, there are two roots and each of them
is bracketed between the minimizing point and one of the section bounds. Both
univariate minimization and univariate root finding when a root is bracketed
may be efficiently performed by Brent’s method [1].

Next, each of the obtained stationary points is passed to a greedy heuristic
as a new vertex weight vector and the found clique is compared to the best
clique known at this moment (initially it is the clique found at the preliminary
stage.) The algorithm result is the best clique obtained upon completion of
this process.

The greedy heuristic used in our method to process the stationary points is a
generalization of the New-Best-In sequential degree heuristic. It runs in O(n2)
time.

Algorithm 1 (New-Best-In Weighted)

Input: a graph G(V,E), a vector x ∈ Rn.

Output: a maximal clique Q.

1. Construct vector y ∈ Rn such that yi = xi +
∑
j∈N(i) xj.

2. Set V1 := V ; k := 1; Q := �.

3. Choose a vertex vk ∈ Vk such that yvk is greatest.

4. Set Q := Q ∪ {vk}.
5. Set Vk+1 := Vk ∩N(vk).

6. For each j ∈ Vk+1, yj := yj −
∑
`∈(Vk\Vk+1)∩N(j) x`.

7. If Vk+1 6= �, then k := k + 1 and go to 3.

8. STOP.

The usual version of this algorithm is when the input vector x is the vertex
weight vector w. Within our trust region technique we submit to this routine

17

the obtained spherical stationary points.

Before anything else we apply a preprocessing able to reduce the input graph
in some instances. It is clear that removing of too low connected vertices and
preselection of too high connected vertices – when these operations do not lead
to missing of the exact solution – are desirable as the Theorem 8 condition
may be violated because of such vertices most. Thus, we iteratively remove
vertices, whose weight together with the neighborhood weight is below the
clique weight derived by Algorithm 1, and preselect any vertex non-adjacent
only to a set weighing not more than the vertex itself.

Algorithm 2 (NBIW-based Graph Preprocess)

Input: a graph G(V,E), its vertex weight vector w.

Output: a reduced graph G(V,E), a preselected vertex subset Q0, a clique Q.

1. Set Q0 := �, B := 0.

2. Do:

2.1. assign Q the result of Algorithm 1 for G(V,E) with its vertex weight
vector w;

2.2. if W (Q) ≤ B, go to 3;

2.3. set B := W (Q);

2.3. set flag := false;

2.4. compose set R of vertices i ∈ V such that wi +
∑
j∈N(i)wj < B;

2.5. if R 6= �, then flag := true;

2.6. remove the vertex subset R from the graph G(V,E);

2.7. compose a clique P of vertices i ∈ V such that wi ≥
∑
j∈V \N(i)\{i}wj;

2.8. B := B −∑j∈P wj;

2.9. Q0 := Q0 ∪ P ;

2.10. compose set R of vertices i ∈ V such that P \N(i) 6= �;

2.11. if R 6= �, then flag := true and go to 2.6;

While (flag AND V 6= �)

3. STOP.

It is easy to see that one 2.6–2.11 cycle takes not more than an O(n2) time
and is repeated only if at least one vertex is removed from the graph. As well,
there are not more than n calls of the Algorithm 1. Hence, the preprocessing
complexity is in O(n3).

The preliminary greedy heuristic we use to derive a first approximation of the
maximum weight clique calls Algorithm 1 n times starting from each of the
vertices as chosen á priori.

18

Algorithm 3 (Meta-NBIW Algorithm)

Input: a graph G(V,E), its vertex weight vector w.

Output: a maximal clique Q̂.

1. Set Q̂ := �.

2. For each i ∈ V :

2.1. construct the subgraph N i
G induced by N(i);

2.2. assign Q the result of Algorithm 1 for N i
G with its vertex weight

subvector;

2.3. Q := Q ∪ {i};
2.4. if Q is better than Q̂, then Q̂ := Q.

3. STOP.

Obviously, the complexity of Algorithm 3 is n · O(n2) = O(n3). It does not
exceed the trust region procedure complexity, so this process does not increase
the total complexity of the method.

Thus, we propose the following method for the maximum weight clique prob-
lem.

Algorithm 4 (QUALEX-MS)

Input: a graph G(V,E), its vertex weight vector w.

Output: a maximal clique Q.

1. Execute Algorithm 2; store the preselected vertex set Q0 and the clique Q.

2. If V = �, then go to 12.

3. Execute Algorithm 3 and store the result Q̂.

4. Compute z by (12), x0 by (27), δ(w) by (32), and D by (33).

5. Compute Â by (30) and b̂ by (31).

6. Perform the eigendecomposition Â = Rdiag(λ1, . . . , λn)RT .

7. Compute the vector c = RT b̂.

8. Compute r2 as r̂2 by (34) for W (Q̂).

9. For each µ > 0 minimizing left-hand side of (22) in a continuous interval
or obeying (22):

9.1. compute y by (21);

9.2. compute x = Ry + x0;

9.3. rescale xi := zixi, i ∈ V ;

9.4. execute Algorithm 1 with the vector x and rewrite the result in Q̂ if
it is a better solution.

End

10. For each eigenvalue cluster λi = . . . = λi+k−1 > 0 satisfying (23):

10.1. compute all yj, j ∈ V \ {i, . . . , i+ k − 1} by (21);

19

10.2. compute r2
0 by (24);

10.3. if r2
0 ≤ r2, then for each combination of yj, j ∈ {i, . . . , i + k − 1}

defined by (25):

10.3.1. compute x = Ry + x0;

10.3.2. rescale xi := zixi, i ∈ V ;

10.3.3. execute Algorithm 1 with the vector x and rewrite the result
in Q̂ if it is a better solution;

end

End

11. If Q̂ is a better solution than Q, then Q := Q̂.

12. Q := Q ∪Q0.

13. STOP.

5 Computational experiment results

The goal of the first computational experiment was to find a smallest maxi-
mum clique instance, where QUALEX-MS cannot find an exact solution. We
used the program geng available at [23] to generate all non-isomorphic to each
other graphs up to 10 vertices inclusive. QUALEX-MS successfully found ex-
act solutions to all those instances. Though it cannot be excluded that with
another vertex numbering in one of them the exact solution would have been
lost, we consider this result to be a strong evidence that counterexamples to
the algorithm do not exist at least up to 11-vertex graphs. Unfortunately, there
are too many non-isomorphic 11-vertex graphs to continue the experiment the
same way, so it has not been completed.

Next, we tested QUALEX-MS on all 80 DIMACS maximum clique instances 1 .
and compared the results against our earlier algorithms QSH and QUALEX
2.0 [5,22]. All three programs were run on a Pentium IV 1.4GHz computer
under OS Linux RedHat. However, the QUALEX-MS package makes use of a
new eigendecomposition routine DSYEVR from LAPACK involving Relatively
Robust Representations to compute eigenpairs after the matrix is reduced to a
tridiagonal form [20]. This explains improvement of the average running time
versus the two other programs. As a BLAS implementation, the platform-
specific prebuilt of ATLAS library 2 was used.

Exact or best known solutions were found by QUALEX-MS in 57 instances.
It is significantly better than 39 exact or best known solutions by QSH and

1 available at ftp://dimacs.rutgers.edu/pub/challenge/graph/
2 available at http://www.netlib.org/atlas/archives/

20

an advance comparing to 51 exact or best known solutions by QUALEX 2.0.
For the rest DIMACS graphs QUALEX-MS obtained good approximation
solutions. The results are composed in Table 1.

Table 1: DIMACS maximum clique benchmark results

Instance n density ω(G) QSH QUALEX 2.0 QUALEX-MS

found t (sec.) found t (sec.) found t (sec.)

brock200_1 200 0.745 21 21 1 21 1 21 1

brock200_2 200 0.496 12 12 < 1 12 < 1 12 < 1

brock200_3 200 0.605 15 15 < 1 15 1 15 1

brock200_4 200 0.658 17 17 1 17 < 1 17 < 1

brock400_1 400 0.748 27 27 4 27 4 27 2

brock400_2 400 0.749 29 29 4 29 4 29 3

brock400_3 400 0.748 31 31 4 31 5 31 2

brock400_4 400 0.749 33 33 4 33 4 33 2

brock800_1 800 0.649 23 17 37 23 36 23 18

brock800_2 800 0.651 24 24 38 24 35 24 18

brock800_3 800 0.649 25 25 38 25 37 25 18

brock800_4 800 0.650 26 26 37 26 35 26 18

C125.9 125 0.898 ≥ 34 31 < 1 33 < 1 34 < 1

C250.9 250 0.899 ≥ 44 42 1 43 1 44 1

C500.9 500 0.900 ≥ 57 52 8 53 8 55 4

C1000.9 1000 0.901 ≥ 68 62 103 63 71 64 27

C2000.5 2000 0.500 ≥ 16 13 1593 16 1547 16 278

C2000.9 2000 0.900 ≥ 77 67 1545 72 1519 72 215

C4000.5 4000 0.500 ≥ 18 15 16198 17 15558 17 2345

c-fat200-1 200 0.077 12 12 < 1 12 < 1 12 < 1

c-fat200-2 200 0.163 24 24 < 1 24 < 1 24 < 1

c-fat200-5 200 0.426 58 58 < 1 58 < 1 58 < 1

c-fat500-1 500 0.036 14 14 5 14 4 14 1

c-fat500-2 500 0.073 26 26 5 26 3 26 2

c-fat500-5 500 0.186 64 64 2 64 2 64 2

c-fat500-10 500 0.374 126 126 3 126 3 126 2

DSJC500.5 500 0.500 ≥ 13 11 9 13 8 13 5

DSJC1000.5 1000 0.500 ≥ 15 13 85 14 74 14 36

gen200_p0.9_44 200 0.900 44 37 1 39 1 42 < 1

gen200_p0.9_55 200 0.900 55 55 < 1 55 < 1 55 1

gen400_p0.9_55 400 0.900 55 48 4 50 4 51 2

gen400_p0.9_65 400 0.900 65 63 4 65 4 65 2

gen400_p0.9_75 400 0.900 75 75 4 75 4 75 2

hamming6-2 64 0.905 32 32 < 1 32 < 1 32 < 1

hamming6-4 64 0.349 4 4 < 1 4 < 1 4 < 1

hamming8-2 256 0.969 128 128 1 128 1 128 < 1

hamming8-4 256 0.639 16 16 1 16 1 16 1

hamming10-2 1024 0.990 512 512 72 512 61 512 38

21

Table 1: DIMACS maximum clique benchmark results

Instance n density ω(G) QSH QUALEX 2.0 QUALEX-MS

found t (sec.) found t (sec.) found t (sec.)

hamming10-4 1024 0.829 ≥ 40 36 70 36 62 36 45

johnson8-2-4 28 0.556 4 4 < 1 4 < 1 4 < 1

johnson8-4-4 70 0.768 14 14 < 1 14 < 1 14 < 1

johnson16-2-4 120 0.765 8 8 < 1 8 < 1 8 < 1

johnson32-2-4 496 0.879 16 16 5 16 5 16 8

keller4 171 0.649 11 11 < 1 11 < 1 11 1

keller5 776 0.751 27 23 22 26 19 26 16

keller6 3361 0.818 ≥ 59 48 6095 51 5721 53 1291

MANN_a9 45 0.927 16 16 < 1 16 < 1 16 < 1

MANN_a27 378 0.990 126 125 2 126 2 125 1

MANN_a45 1035 0.996 345 342 70 342 61 342 17

MANN_a81 3321 0.999 ≥ 1100 1096 6671 1096 6057 1096 477

p_hat300-1 300 0.244 8 7 1 8 2 8 1

p_hat300-2 300 0.489 25 24 2 24 1 25 1

p_hat300-3 300 0.744 36 33 1 35 2 35 1

p_hat500-1 500 0.253 9 9 9 9 9 9 3

p_hat500-2 500 0.505 36 33 8 36 9 36 4

p_hat500-3 500 0.752 ≥ 50 46 8 48 9 48 4

p_hat700-1 700 0.249 11 8 23 11 24 11 10

p_hat700-2 700 0.498 44 42 24 43 26 44 12

p_hat700-3 700 0.748 ≥ 62 59 24 61 24 62 11

p_hat1000-1 1000 0.245 ≥ 10 9 82 10 76 10 28

p_hat1000-2 1000 0.490 ≥ 46 43 85 45 79 45 34

p_hat1000-3 1000 0.744 ≥ 68 62 83 65 76 65 32

p_hat1500-1 1500 0.253 12 10 458 12 489 12 95

p_hat1500-2 1500 0.506 ≥ 65 62 453 64 507 64 111

p_hat1500-3 1500 0.754 ≥ 94 85 465 91 486 91 108

san200_0.7_1 200 0.700 30 30 < 1 30 < 1 30 1

san200_0.7_2 200 0.700 18 18 1 18 < 1 18 < 1

san200_0.9_1 200 0.900 70 70 < 1 70 1 70 < 1

san200_0.9_2 200 0.900 60 60 < 1 60 < 1 60 1

san200_0.9_3 200 0.900 44 35 1 40 < 1 40 < 1

san400_0.5_1 400 0.500 13 9 3 13 4 13 2

san400_0.7_1 400 0.700 40 40 4 40 4 40 3

san400_0.7_2 400 0.700 30 30 4 30 4 30 2

san400_0.7_3 400 0.700 22 16 4 17 4 18 2

san400_0.9_1 400 0.900 100 100 3 100 4 100 2

san1000 1000 0.502 15 10 76 15 69 15 25

sanr200_0.7 200 0.697 18 15 1 17 1 18 1

sanr200_0.9 200 0.898 42 37 < 1 41 < 1 41 < 1

sanr400_0.5 400 0.501 13 11 4 12 4 13 2

sanr400_0.7 400 0.700 ≥ 21 18 4 20 5 20 2

22

The last computational experiment performed with QUALEX-MS was finding
maximum weight cliques. Since there are no widely accepted maximum weight
clique test suites, we followed the approach accepted in [11] and tested the algo-
rithm against normal and irregular random graphs with various edge densities
comparing it to the algorithm PBH (which is another recent continuous-based
heursitic.) To generate the irregular random graphs Algorithm 4.1 from [11]
was used. Vertex weights were evenly distributed random integer numbers
from 1 to 10. Due to significantly better speed of QUALEX-MS comparing to
the heuristics considered in [11] and availability of a highly optimized exact
maximum weight clique solver cliquer by P. Österg̊ard and S. Niskanen 3 ,
we were able to perform the tests not only on 100-vertex graphs but also on
200-vertex graphs up to the edge density 0.8. As well, we increased the number
of tested graphs in each group from 20 to 50. The running time of QUALEX-
MS on all those instances is in 1 second, so it may be considered negligible.
However, similar testing on larger graphs is unfortunately difficult because of
significant slowing down of the exact solver.

Table 2: Performance of QUALEX-MS vs. PBH on random weighted graphs

n density QUALEX-MS PBH

Normal Irregular Normal Irregular

Avg. R St. Dev. Avg. R St. Dev. Avg. R St. Dev. Avg. R St. Dev.

100 0.10 100.00% ±0.00 100.00% ±0.00 97.95% ±0.15 98.44% ±0.13

100 0.20 100.00% ±0.00 99.88% ±0.05 97.73% ±0.16 98.64% ±0.12

100 0.30 99.87% ±0.05 99.89% ±0.04 97.25% ±0.17 98.84% ±0.11

100 0.40 99.48% ±0.18 99.75% ±0.05 95.04% ±0.23 98.53% ±0.12

100 0.50 99.45% ±0.19 99.81% ±0.04 94.61% ±0.24 98.74% ±0.12

100 0.60 99.18% ±0.21 99.93% ±0.02 94.71% ±0.23 99.64% ±0.06

100 0.70 98.02% ±0.32 99.84% ±0.03 96.10% ±0.20 98.94% ±0.11

100 0.80 98.54% ±0.29 99.99% ±0.00 93.13% ±0.26 98.56% ±0.12

100 0.90 98.43% ±0.27 99.99% ±0.00 94.29% ±0.24 99.56% ±0.07

100 0.95 98.72% ±0.20 100.00% ±0.00 96.49% ±0.19 99.75% ±0.05

200 0.10 100.00% ±0.00 99.97% ±0.04

200 0.20 99.55% ±0.19 99.86% ±0.04

200 0.30 99.33% ±0.29 99.45% ±0.16

200 0.40 99.08% ±0.45 99.36% ±0.35

200 0.50 98.34% ±0.46 99.32% ±0.14

200 0.60 98.00% ±0.35 99.61% ±0.10

200 0.70 96.99% ±0.64 99.54% ±0.12

200 0.80 96.21% ±0.55 99.71% ±0.10

Table 2 presents the results of this computational experiment. The measured
value is percentage of the found clique weights to the optimum clique weights

3 available at http://www.hut.fi/˜ pat/cliquer.html

23

averaged through all graphs of a group (Avg. R columns). Second result
columns represent standard deviations of these values (St. Dev. columns).
The obtained figures show that our method strictly outperforms the algo-
rithm PBH and the difference between maximum weight cliques and those
found by QUALEX-MS is rather negligible.

6 Remarks and conclusions

We have presented a new fast heuristic method for the maximum weight clique
problem. It has been shown empirically that the method is exact on a consid-
erable range of instances. Among them are the Brockington-Culberson graphs
from the DIMACS test suite [15] (brock*) exceptionally hard for all other
types of heuristics that may be found in the literature. Besides, we have spec-
ified theoretically a non-trivial class of instances where the used trust region
formulation may directly deliver a maximum weight clique indicator (Theorem
8).

As the next step of QUALEX-MS development it should be investigated
whether it is possibile to express Motzkin–Straus optima as a function of a
particular subset of the spherical stationary points. It may lead to a general-
ization of Theorem 8 expanding the class of maximum weight clique instances
where the optimum is directly computable by the presented trust region proce-
dure. A case theoretically seeming to be the worst for the described technique
is when there are multiple eigenvalues causing the trust region problem de-
generacy. It may be supposed that a special submethod dealing with such
instances should be developed.

Acknowledgements

The author would like to thank Dr. Panos Pardalos and an anonymous referee
for valuable remarks and suggestions that helped to improve the quality of
the paper.

References

[1] R.P. Brent, Algorithms for Minimization without Derivatives (Englewood Cliffs,
NJ: Prentice-Hall, 1973).

[2] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness (Freeman & Co., 1979).

24

[3] J. Abello, S. Butenko, P.M. Pardalos, and M.G.C. Resende, Finding
independent sets in a graph using continuous multivariable polynomial
formulations, Journal of Global Optimization 21:4 (2001) 111–137.

[4] S. Burer, R.D.C. Monteiro, and Y. Zhang, Maximum stable set formulations
and heuristics based on continuous optimization, Mathematical Programming
94:1 (2002) 137–166.

[5] S. Busygin, S. Butenko, and P.M. Pardalos, A heuristic for the maximum
independent set problem based on optimization of a quadratic over a sphere,
Journal of Combinatorial Optimization 6:3 (2002) 287–297.

[6] G.E. Forsythe and G.H. Golub, On the stationary values of a second degree
polynomial on the unit sphere, SIAM J. Appl. Math. 13 (1965) 1050–1068.

[7] L.E. Gibbons, D.W. Hearn, P.M. Pardalos, and M.V. Ramana, Continuous
characterizations of the maximum clique problem, Math. Oper. Res. 22 (1997)
754–768.

[8] W. Hager, Minimizing a quadratic over a sphere, SIAM J. Optim. 12 (2001)
188–208.

[9] S. Lyle and M. Szularz, Local minima of the trust region problem, Journal of
Optimization Theory and Applications 80 (1994) 117–134.

[10] C. Mannino and E. Stefanutti, An augmentation algorithm for the maximum
weighted stable set problem, Computational Optimization and Applications 14
(1999) 367–381.

[11] A. Massaro, M. Pelillo, and I.M. Bomze, A complementary pivoting approach
to the maximum weight clique problem, SIAM J. Optim. 12:4 (2001) 928–948.

[12] J.J. Moré and D.S. Sorensen, Computing a trust region step, SIAM J. Sci.
Statist. Comput. 4 (1983) 553–572.

[13] T.S. Motzkin and E.G. Straus, Maxima for graphs and a new proof of a theorem
of Turan, Canadian Journal of Mathematics 17:4 (1965) 533–540.

[14] I.M. Bomze, M. Budinich, P.M. Pardalos, and M. Pelillo, The maximum clique
problem, in: D.-Z. Du and P.M. Pardalos, eds., Handbook of Combinatorial
Optimization (Supplement Volume A), Kluwer Academic (1999), 1–74.

[15] M. Brockington and J.C. Culberson, Camouflaging independent sets in quasi-
random graphs, in: D. Johnson and M.A. Trick, eds., Cliques, Coloring and
Satisfiability, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 26 (AMS,
Providence, RI, 1996) 75–88.

[16] J. H̊astad, Clique is hard to approximate within n1−ε, in: Proc. 37th Annual
IEEE Symposium on the Foundations of Computer Science (FOCS) (1996) 627–
636.

[17] S. Khot, Improved inapproximability results for maxclique, chromatic number
and approximate graph coloring, in: Proc. 42nd Annual IEEE Symposium on
the Foundations of Computer Science (FOCS) (2001) 600–609.

25

[18] V.Y. Pan and Z.Q. Chen, The complexity of the matrix eigenproblem, in:
The 21st Annual ACM Symposium on Theory of Computing (Atlanta, Georgia,
ACM Press, 1999) 507–516.

[19] Y. Ye, A new complexity result on minimization of a quadratic function with
a sphere constraint, in: Recent Advances in Global Optimization (Princeton
University Press, 1992), 19–31.

[20] I.S. Dhillon, A new O(n2) algorithm for the symmetric tridiagonal
eigenvalue/eigenvector problem, Computer Science Division Technical Report
No. UCB//CSD-97-971 (UC Berkeley, 1997).

[21] P. St-Louis, J.A. Ferland, and B. Gendron, A penalty-evaporation heuristic in a
decomposition method for the maximum clique problem, Submitted manuscript ,
http://www.iro.umontreal.ca/~gendron/publi.html

[22] S. Busygin, Stas Busygin’s NP-completeness page,
http://www.busygin.dp.ua/npc.html

[23] B.D. McKay, The nauty page,
http://cs.anu.edu.au/~bdm/nauty/

26

